
Heera Singh Lodhi

Java Programming

1 | P a g e www.onlinevidyalay.com

Course Contents

S.No. Topic Date Page No

1 Introduction to Java 25/06/2022 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Features of Java

C++ v/s Java

JDK (Java Development Kit)

JVM Architecture

First Program (Hello World)

Data types

Escap sequence

Type casting/type conversion

Variable & Constant

Enumerated types

Operators & their types

Priority & Associativity of operators

Big Numbers

INPUT/OUTPUT

File input/output

Control Flow

Conditional Statements

Loops

Function

Method overloading

Recursion

String

25/06/2022

25/06/2022

11/07/2022

12/06/2022

26/06/2022

26/06/2022

26/06/2022

27/06/2022

08/07/2022

08/07/2022

http://www.onlinevidyalay.com/
file:///D:/PROGRAMMING/Notes/Java%20Programming%20by%20Alok%20sir%20&%20Heera%20Singh%20Lodhi.docx%23introduction

Heera Singh Lodhi

Java Programming

2 | P a g e www.onlinevidyalay.com

24

25

26

27

28

String builder

Bit manipulation

Collection framework

ArraysList

HashSet

05/08/2022

Object Oriented Programming System (OOPS)

S. No. Topic Date Page No

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16.

Introduction to Object-Oriented Programming

Class

Abstract Class

Object

Constructor

Types of Constructors

Destructor

Encapsulation

Data hiding

Abstraction

Polymorphism

Inheritance

Package

Exception Handling

Thread

25/06/2022

18/07/2022

20/07/2022

20/07/2022

21/07/2022

22/07/2022

22/07/2022

22/07/2022

23/07/2022

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

3 | P a g e www.onlinevidyalay.com

17.

18.

19.

20.

Multi Threading

Multi-Threading

Access modifier

File Handling

02/08/2022

23/07/2022

21. Interview Questions

Introduction

Java is a true object-oriented programming, which is used to develop number of applications like

• Console application

• Windows application

• Distributed application

• Web application

Features of Java

• WORA Principle– write once, runs anywhere.

• Platform independent language (machine independent).

• Platform-independent: Java is platform-independent, which means it can run on any platform that has

a Java Virtual Machine (JVM) installed. This makes it easy to write once and run anywhere.

• Memory Management

• Multi-Threading

• Secure

• Object-Oriented

C++ v/s JAVA

C++ and Java are two popular programming languages that are used for different purposes.

While they share some similarities, there are also many differences between them. Here are a

few key differences:

FAQ in interview by this topic

What is JAVA?

Application/uses of java?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

4 | P a g e www.onlinevidyalay.com

Feature C++ Java

Syntax More complex syntax, harder to learn Simpler syntax, easier to learn

Memory Management Manual memory management Automatic memory management (JVM-managed)

Platform Independence Platform-specific compilation Platform-independent bytecode (JVM)

Performance Generally considered faster Optimized for portability, may be slower

Object-oriented Supports both procedural and OOP Strict adherence to object-oriented rules

Standard Library Standard library is less extensive More extensive standard library

JDK (Java Development Kit)

The Java Development Kit (JDK) is a software development kit that includes a set of tools for developing Java

applications. Some of the key development tools in the JDK include:

1. Java Compiler (javac): This tool is used to compile Java source code into bytecode that can be executed

by the Java Virtual Machine (JVM).

2. Java Virtual Machine (JVM): The JVM is responsible for executing Java bytecode on different platforms.

3. Java Archive (JAR) tool: The JAR tool is used to create, modify, and extract Java archive files, which are

used to package Java classes and resources into a single file.

4. Java Debugger (jdb): The Java Debugger is a command-line tool that allows developers to debug Java

programs by setting breakpoints, inspecting variables, and stepping through code.

5. JavaDoc tool: The JavaDoc tool is used to generate documentation for Java source code in HTML format.

6. JavaFX tools: JavaFX is a set of tools and libraries for building rich client applications in Java. The JDK

includes tools for developing JavaFX applications, such as the JavaFX Packager tool, which is used to

package JavaFX applications for distribution.

7. Java Mission Control (JMC): JMC is a tool for monitoring and managing Java applications, providing

insights into application performance and behavior.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

5 | P a g e www.onlinevidyalay.com

JDK – JDK is an application software. JDK is a combination of JRE and development tools.

Development tools - Development Tools are software applications that help developers to make easier the

entire process of developing, testing, and deployment in Java.

JRE – JRE stands for java runtime environment, JRE is an application software, JRE is a combination of JVM and Java API.

JVM (Java Virtual Machine) – JVM is responsible to load and to execute a

.class or bytecode file.

JAVA API - APIs are important software components bundled with

the JDK. APIs in Java include classes, interfaces, and user Interfaces.

They enable developers to integrate various applications and

websites and offer real-time information.

There are three main parts of JVM.

1. CLS

2. Memory

FAQ in interview by this topic

What is JDK?

What is JVM?

What is JRE?

What is JAVA API?

Example of development tools in java?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

6 | P a g e www.onlinevidyalay.com

3. Execution Engine

JVM Architecture

JVM (Java Virtual Machine) acts as a run-time engine to run Java applications. JVM is the one that calls the

main method present in a java code. JVM is a part of JRE (Java Runtime Environment).

- JVM is platform dependent.

JVM has main three parts.

1. CLS

2. MEMORY

3. Execution Engine

Class loader subsystem (Loader)

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

7 | P a g e www.onlinevidyalay.com

Class loader subsystem is responsible to load a .class file.

Class loader subsystem consist main three parts: -

1. Loader

2. Linker

3. Initializer

Loader

Loader is a part class loader subsystem. It loads .class/byte-code file in various memory.

The Class loader reads the “.class” file, generate the corresponding binary data and save it in the method area.

For each “.class” file, JVM stores the following information in the method area.

• The fully qualified name of the loaded class and its immediate parent class.

• Whether the “.class” file is related to Class or Interface or Enum.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

8 | P a g e www.onlinevidyalay.com

• Modifier, Variables and Method information etc.

There are three types of class loaders.

1. Bootstrap Loader

2. Extension Loader

3. Application/System Loader

After loading the “.class” file, JVM creates an object of type Class to represent this file in the heap memory.

Please note that this object is of type Class predefined in java.lang package.

These Class object can be used by the programmer for getting class level information like the name of the

class, parent name, methods, and variable information etc. To get this object reference we can use getClass()

method of Object class.

Note: For every loaded “.class” file, only one object of the class is created.

Bootstrap class loader: Every JVM implementation must have a bootstrap class loader, capable of loading

trusted classes. It loads core java API classes present in the “JAVA_HOME/jre/lib” directory.

This path is popularly known as the bootstrap path. It is implemented in native languages like C, C++.

Extension class loader: It is a child of the bootstrap class loader. It loads the classes present in the extensions

directories “JAVA_HOME/jre/lib/ext.” (Extension path) or any other directory specified by the java.ext.dirs

system property. It is implemented in java by the sun.misc.Launcher$ExtClassLoader class.

System/Application class loader: It is a child of the extension class loader. It is responsible to load classes

from the application class path. It internally uses Environment Variable which mapped to java.class.path. It is

also implemented in Java by the sun.misc.Launcher$AppClassLoader class.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

9 | P a g e www.onlinevidyalay.com

Linker

Linker is a computer system program that takes one or more object files (generated by a compiler or an

assembler) and combines them into a single executable file, library file, or another “object” file.

Linker performs operations on byte code: -

Verify, prepare, and resolve.

Verify: - It ensures the correctness of the .class file i.e., it checks whether this file is properly formatted and

generated by a valid compiler or not.

Verify is a part of linker, it checks .class file generated by a valid compiler or not.

Prepare: - Prepare is a part of linker. Which is situated in class loader subsystem. Allocates memory for

member variable, local variable and initialized with default values.

Resolve: - It is a process of changing the symbolic references with the original memory references from the

method area.

Initializer

Initializer is part of class loader subsystem. It is responsible to allocate memory for static variables and

initialize its respective values.

Memory

• Method area

• Heap area

• Stack area

• PC registers

• Native method stack

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

10 | P a g e www.onlinevidyalay.com

Method area

In the method area, all class level information like class name, immediate parent class name, methods and

variables information etc. are stored, including static variables. There is only one method area per JVM, and it

is a shared resource.

Method area is type of various memory area in JVM architecture. Each JVM has its own method area, it

contains all information of class.

Heap area

Information of all objects is stored in the heap area. There is also one Heap Area per JVM. It is also a shared

resource.

Stack area

For every thread, JVM creates one run-time stack which is stored here. Every block of this stack is called

activation record/stack frame which stores methods calls. All local variables of that method are stored in their

corresponding frame. After a thread terminates, its run-time stack will be destroyed by JVM. It is not a shared

resource.

Frame - In stack area every thread creates its own stack is called frame.

Frame stack divided into three parts

i. Local variable array - array of primitive data types

ii. Operand stack – expression evaluation

iii. Frame data – it is a part of stack frame it holds the symbolic reference of method

PC Registers

PC register is part various memory areas in JVM architecture. Each thread has its own pc

register. That contain the information of next performed operation.

Native method stack

For every thread, a separate native stack is created. It stores native method information.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

11 | P a g e www.onlinevidyalay.com

Execution Engine

Execution engine executes the “.class” (bytecode). It reads the byte-code line by line, uses data and

information present in various memory area and executes instructions. It can be classified into three parts:

• Interpreter

• JIT-Compiler

• Garwage Collector

NOTE
Local variables -> Stack area

Member variables -> Heap area

Static variables -> Method area

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

12 | P a g e www.onlinevidyalay.com

Native exe Profiler Garwage Collector

Interpreter: Interpreter is a part of execution engine in java. It directly communicates with various memory

area. Interpreter load, interprets, and execute each line of code, line-by-line and converted bytecode +into

native .exe is called interpreter.

It interprets the bytecode line by line and then executes. The disadvantage here is that when one method is

called multiple times, every time interpretation is required. So, we introduce JIT-Compiler.

Just-In-Time Compiler (JIT): It is used to increase the efficiency of an

interpreter.

It compiles the entire bytecode and changes it to native code so whenever

the interpreter sees repeated method calls, JIT provides direct native code

for that part so re-interpretation is not required, thus efficiency is

improved.

• JIT is used to increase the efficiency of an interpreter, whenever the

interpreter sees repeated method calls, JIT provides direct native code for that part so re-

interpretation is not required, thus efficiency is improved.

+

Garbage Collector: It destroys un-referenced objects.

Java Native Interface (JNI):

It is an interface that interacts with the Native Method Libraries and

provides the native libraries (C, C++) required for the execution. It

enables JVM to call C/C++ libraries and to be called by C/C++ libraries

which may be specific to hardware.

Native Method Libraries:

It is a collection of the Native Libraries (C, C++) which are required by the Execution Engine.

Profiler

Profiler is a part of execution engine in JVM architecture. The Profiler monitor native code, check the

performance of native code is good or bad. If performance is bad that inform to garbage collector to remove

it.

FAQ in interview by this topic

What is JNI (Java Native Interface)?

What is profiler?

FAQ in interview by this topic

What is JIT Compiler?

What is garbage +++collector?

FAQ in interview by this topic

What is interpreter?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

13 | P a g e www.onlinevidyalay.com

Hello world in Java.

Program

1. public class Main {
2. // main is method
3. // public access modifier
4. public static void main(String[] args) {
5. System.out.println("Hello World!");
6. }
7. }

// OUTPUT

// Hello World

args - args is command line arguments.

-> Command Line Arguments?

Our console is a command prompt each line into command prompt is called command line, and arguments passes into

that line is called command line arguments.

out – out is an object of PrintStream class, define into system class.

System – System is class define into java.lang.* package.

println – println is a public static member method of PrintStream class.

Data type

Data type specifies the type of data that can be stored in a variable and the

number of bytes required to represent a type.

Java is strongly types of language. This means that every variable must have a declared type.

There are eight primitives’ data types in java.

FAQ in interview by this topic

What is command line arguments?

FAQ in interview by this topic

What is data type?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

14 | P a g e www.onlinevidyalay.com

4 -> Integer type

2 -> Floating-point number

1 -> character

1 -> boolean

Integer types

The integer types are for numbers without fractional parts. Negative values are allowed. Java provides the

four integer types.

Type Storage requirement Range (inclusive)

int 4 bytes -2,147,483,648 to -2,147,483,647 (just over 2 billion)

short 2 bytes - 32768 to 32767

long 8 bytes Range (2^32-1)/2

byte 1 byte -128 to 127

Under java, the range of integer types do not depend on the machine on which you will be running the code.

Note that java does not have any unsinged versions of the int, long, short, or byte types.

Floating point type

The floating-point types denote numbers with fractional parts. The two floating-point types shown.

Type Storage requirement Range (inclusive)

float 4 bytes Approximately -+ 3.40x10^38 (6-7 significant decimal digits.

double 8 bytes Approximately -+ 1.79x10^308 (15 significant decimal digits.

The char Type

a character constant with value 65. It is different from "A", a string containing
a single character. Values of type char can be expressed as hexadecimal
values that run from \u0000 to \uFFFF. For example, \u2122 is the trademark
symbol (™) and \u03C0 is the Greek letter pi (π).

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

15 | P a g e www.onlinevidyalay.com

Escap sequece

a character constant with value 65. It is different from "A", a string containing

a single character. Values of type char can be expressed as hexadecimal

values that run from \u0000 to \uFFFF. For example, \u2122 is the trademark

 symbol (™) and \u03C0 is the Greek letter pi (π).

Escape sequence Meaning

\\ - \ character

\' - ' character

\" - " character

\? - ? character

\a - Alert or bell

\b - Backspace

\f - Form feed

\n - Newline

\r - Carriage return

\t - Horizontal tab

\v - Vertical tab

\ooo - Octal number of one to three digits

The Boolean type

 The Boolean type has two values, false and true. It is used for evaluating logical conditions. You cannot

convert between integers and Boolean values.

Enumerated Types

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

16 | P a g e www.onlinevidyalay.com

Sometimes, a variable should only hold a restricted set of values, for example, you may sell clothes or pizza in

four Size: small, medium, large and extra large.

Enumerated types must be global not local

class Main {
 enum Size {SMALL, MEDIUM, LARGE, EXTRA_LARGE};
 public static void main(String args[]) {
 Size s = Size.MEDIUM;
 System.out.println(s);
 }
}

Type conversion

class Main {
 public static void main(String args[]) {

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

17 | P a g e www.onlinevidyalay.com

 double a = 9.997;
 int nx = (int) a;
 System.out.println(nx); // 9
 }
}

Now, the variable nx has the value 9 because casting a floating-point value to

an integer discards the fractional part.

class Main {
 public static void main(String args[]) {
 double a = 9.997;
 int nx = (int) a;
 System.out.println(nx); // 9
 nx = (int) Math.round(a);
 System.out.println(nx); // 10

 }
}

Variable & Constant

Variable

 Variable is a quantity, that can be changed at any time during

program execution.

Constant
Variable is a quantity, that can not be changed in program and during program execution.
ex. 1,2, %, @, 's' etc.
Final keyword is used to denote a constant. For example

 final float CM_PER_INCH = 2.54F;
 final float PI = 3.14F;

By naming convention of java constant must be written in UPPERCASE latter.

Const is a reserved java keyword, but it is not currently used for anything, you must use final for a constant.

Variable declaration

FAQ in interview by this topic

What is variable?

What is constant?

What is final keyword?

How to declare variable and constant?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

18 | P a g e www.onlinevidyalay.com

In java, every variable has a type. You declare a variable by placing the type first, followed by the name of the
variable. Here some example

 int age;

Initializing of variable/assigning
Initializing of vaiable mean assign/put the value in the variable.

 int age = 20;

class Main {
 public static void main(String args[]) {

 // here is a variable and 10 is constant.
 int a = 10;
 System.out.println(a); // output -> 10

 a = 11;
 // here value of changed
 System.out.println(a); // output -> 11
 }

}

A variable of type size can hold only one of the values listed in the type decleration, or the special value null
that indicates that the variable if not set to any value at all.
final float

CM_PER_INCH = 2.54F;

final float

PI = 3.14F; By naming convention of java constant must be written in UPPERCASE latter. Const is a reserved

java keyword, but it is not currently used for anything , you must use final for a constant.

Variable declaration

In java, every variable has a type. You declare a variable by placing the type first, followed by the name of the

variable. Here some example

int age;

Initializing of variable/assigning

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

19 | P a g e www.onlinevidyalay.com

Initializing of variable mean assign/put the value in the variable.

int age = 20;

class Main {

 public static void main(String args[]) {

 // here is a variable and 10 is constant.

 int a = 10;

 System.out.println(a); // output -> 10

 a = 11;

 // here value of changed

 System.out.println(a); // output -> 11

 }

}

Keywords

Comments are lines of code that are ignored by the compiler.

They are used to adding human-readable explanations and notes to the source code, and can help to

document and clarify the purpose of the code.

-> There are 67 keywords in Java

→ Comments are used to explain the programming logic, which useful in the future.

There are two types of comments in Java:

Single-line comments and multi-line comments.

Single-line comments start with a double forward slash (//) and extend to the end of the line. For example:

// This is a single-line comment

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

20 | P a g e www.onlinevidyalay.com

// comments are never executed

Multi-line comments start with a forward slash and an asterisk (/*) and end with an asterisk and a forward

slash (*/). Anything between these markers is considered a comment. For example:

/* This is a

 multi-line comment */

/*

 this is a

 multiline comment

 */

Keywords & Identifier

Identifier

The identifier is the name given to entities such as variables, functions, structures etc. Identifiers must always

be unique. They are created to give a unique name to an entity to identify it during the execution of the

program.

Rules of defining Java variable/identifier: -

A variable can have a short name (like x and y) or a more descriptive name (age, carname, total_volume).

A variable name must start with a letter or the underscore character

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

21 | P a g e www.onlinevidyalay.com

A variable name cannot start with a number.

A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)

Identifier names are case-sensitive (age, Age and AGE are three different variables)

Variable name can you start it from $, this is valid in c just like PHP

Keywords

Keywords are reserved words, which has special meaning to the Java compiler, there are 67 reserved words in

Java, that 67 keywords

Keywords we can’t use as name of an identifier.

Example – class, if, else etc.

Operator

Operator is nothing, but it is a symbol, that is used to perform

mathematical and logical operations.

Example: - +, -, ^, %

class Operator {
 public static void main (String args []) {
 // sum of two number
 // here a and b both are operands
 int a = 5;
 int b = 10;

 // here + is operator used to add two number
 System.out.println(a + b);

 }
}

Types of operators

FAQ in interview by this topic

What is an operator?

How many types of operators in java?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

22 | P a g e www.onlinevidyalay.com

There are following types of operators in Java:

• Arithmetic operators

• Relational operators/comparison

• Logical operators

• Bitwise operators

• Assignment operators

• Ternary operators

Arithmetic Operators

Arithmetic operators are used to perform common mathematical operations.

Operator Name Description Example

+ Addition Adds together two values x + y

- Subtraction Subtracts one value from another x - y

* Multiplication Multiplies two values x * y

/ Division Divides one value by another x / y

% Modulus Returns the division remainder x % y

++ Increment Increases the value of a variable by 1 ++x

-- Decrement Decreases the value of a variable by 1 --x

Relational Operators

Comparison operators are used to compare two values:

Operator Name Example

== Equal to x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

23 | P a g e www.onlinevidyalay.com

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Logical operators

Logical operators are used to determine the logic between variables or values:

Operator Name Description

&& Logical and Returns true if both statements are true

|| Logical or Returns true if one of the statements is true

! Logical not Reverse the result, returns false if the result is true

Bitwise operators

Bitwise operators are used to performing the manipulation of individual bits of a number.

Example

5 -> 1001

7 -> 0111

Operator Name Description Example

& Bitwise and Perform bitwise and 5&7

1 000

0 1 1 1

0000 -> 0

| Bitwise or Perform bitwise or 5|7

1 000

0 1 1 1

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

24 | P a g e www.onlinevidyalay.com

1 1 1 1 -> 15

^ Bitwise xor Perform xor operation 5^7

1 000

0 1 1 1

1 1 1 1 -> 15

~ Once complement Bitwise complement ~5 (1001)

1 0 0 1 -> 0 1 1 0 + 1

0 1 1 1 -> 7

Bit-Shift Operators (Shift Operators)

Shift operators are used to shift the bits of a number left or right, thereby multiplying or dividing the number

by two, respectively. They can be used when we have to multiply or divide a number by two.

Types of Shift Operators:

Shift Operators are further divided into 4 types. These are:

Signed Right shift operator (>>)

Unsigned Right shift operator (>>>)

Left shift operator

Unsigned Left shift operator (<<<)

Ternary operator

Java ternary operator is the only conditional operator that takes three operands. It’s a one-liner replacement

for the if-then-else statement and is used a lot in Java programming.

Syntax:

variable = Expression1 ? Expression2: Expression3

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

25 | P a g e www.onlinevidyalay.com

Assignment operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator (=) to assign the value 10 to a variable called x:

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Priority And Associativity of operators

Operators Precedence Associativity

postfix increment and decrement ++ -- left to right

prefix increment and decrement, and unary ++ -- + - ~ ! right to left

multiplicative * / % left to right

additive + - left to right

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

26 | P a g e www.onlinevidyalay.com

shift << >> >>> left to right

relational < > <= >= instanceof left to right

equality == != left to right

bitwise AND & left to right

bitwise exclusive OR ^ left to right

bitwise inclusive OR | left to right

logical AND && left to right

logical OR || left to right

ternary ? : right to left

assignment = += -= *= /= %= right to left

&= ^= |= <<= >>= >>>=

Big numbers

These are classes for manipulating numbers with

an arbitrarily long sequence of digits. The BigInteger class implements

arbitrary-precision integer arithmetic, and BigDecimal does the same for

floating-point numbers.

import java.math.BigInteger;

// BigInteger class has inbuilt add, multiply, divide methods

class Main {

 public static void main(String args[]) {

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

27 | P a g e www.onlinevidyalay.com

 BigInteger bInt = new BigInte-

ger("222232244629420445529739893461909967206666939096499764990979600");

 System.out.println(bInt);

 }

}

Input/Output

Reading from the “standard input stream” System.in isn’t quite as

simple. To read console input, you first construct a Scanner class

object that is attached to System.in.

Scanner sc = new Scanner(System.in);

Theire are many methods are available in Scanner class for example: -

next() -> read only one word input

nextLine() -> reads a line of input

nextInt() -> to read an integer input

nextDouble() -> to read a double input

Console cons = System.console();

String username = cons.readLine("User name: ");

char[] password = cons.readPassword("Password: ");

NOTE
The scanner class is not suitable for reading a password from a console since the input is painly visible to

anyone. Use the Console class for this purpose. To read a password from the user. Use the following code:

FAQ in interview by this topic

How to take input from user and display?

How to read sentence?

How to read an integer?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

28 | P a g e www.onlinevidyalay.com

Console cons = System.console();

String username = cons.readLine("User name: ");

char[] password = cons.readPassword("Password: ");

OUTPUT

To displaying output to the standard output stream (that is, the console window) just by calling

System.out.println() -> with new line

System.out.print() -> without new line

System.out.println() -> with new line

System.out.printf() -> formatted output

double f = 1000.0/3.0;

System.out.printf("%.3f", f);

Output-> 333.333

BufferedReader

BufferedReader is a class that reads text from a character input stream, buffering characters so as to provide

for the efficient reading of characters, arrays, and lines.

The key benefit of using BufferedReader is that it reads the input data in chunks, which makes it more efficient

than reading one character at a time. It also provides methods for reading lines and arrays of characters, as

well as for skipping over characters in the input stream.

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.IOException;

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

29 | P a g e www.onlinevidyalay.com

public class Main{

 public static void main(String[] args) {

 try {

 BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

 String str = reader.readLine();

 System.out.println(str);

 reader.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

read() method to read individual characters.

readLine() method to read entire lines of text.

File input and Output

To read from a file, construct a Scanner class object like this:

import java.nio.charset.StandardCharsets;

Scanner fileInput = new Scanner(Path.of("file.txt"), StandardCharsets.UTF_8);

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

30 | P a g e www.onlinevidyalay.com

public class Main{

 public static void main(String[] args) {

 try {

 BufferedReader reader = new BufferedReader(new FileReader("input.txt"));

 String line = reader.readLine();

 while (line != null) {

 System.out.println(line);

 line = reader.readLine();

 }

 reader.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

InputStreamReader

InputStreamReader is a class that is used to convert bytes from an InputStream into characters using a

specified character encoding. This is useful when you are reading text data from an input stream, such as a file

or a network socket, and you need to convert the raw bytes into characters that can be processed by your

application.

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.IOException;

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

31 | P a g e www.onlinevidyalay.com

public class Main{

 public static void main(String[] args) {

 try {

 InputStream input = new FileInputStream("myfile.txt");

 InputStreamReader reader = new InputStreamReader(input, "UTF-8");

 int c = reader.read();

 while (c != -1) {

 System.out.print((char) c);

 c = reader.read();

 }

 reader.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Conditional Statements

Conditional statements in C allow you to execute a block of code only if a certain condition is met. There are three types

of conditional statements in C: if, if-else, and switch.

The if statement is used to execute a block of code if a certain condition is true. The syntax for an if statement is:

Copy code

if (condition) {

 // code to be executed if condition is true

}

For example:

Copy code

int x = 10;

if (x > 5) {

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

32 | P a g e www.onlinevidyalay.com

 printf("x is greater than 5\\n");

}

The if-else statement is similar to the if statement, but it allows you to specify a block of code to be executed if the

condition is false. The syntax for an if-else statement is:

Copy code

if (condition) {

 // code to be executed if condition is true

} else {

 // code to be executed if condition is false

}

For example:

Copy code

int x = 10;

if (x > 5) {

 System.out.println("x is greater than 5");

} else {

 System.out.println("x is not greater than 5");

}

The switch statement is another way to perform different actions based on different conditions. It is used when you

have multiple conditions that depend on the value of a single expression. The syntax for a switch statement is:

Copy code

switch (expression) {

 case value1:

 // code to be executed if expression equals value1

 break;

 case value2:

 // code to be executed if expression equals value2

 break;

 ...

 default:

 // code to be executed if expression does not match any case

}

For example:

Copy code

int x = 2;

switch (x) {

 case 1:

 System.out.println("x is 1\\n");

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

33 | P a g e www.onlinevidyalay.com

 break;

 case 2:

 System.out.println("x is 2\\n");

 break;

 case 3:

 System.out.println("x is 3\\n");

 break;

 default:

 System.out.println("x is not 1, 2, or 3\\n");

}

Overall, conditional statements in Java allow you to control the flow of your program and execute different blocks of

code based on different conditions.

Function

Function is a bloack of code that perform a specific task.

 Or

Function is a piece of code that perform a specific task, function enables

code reusability.

Main two parts of function

Function definition

Function return type

Example

static means that the method belongs to the Main class and not an object of the Main class.

FAQ in interview by this topic

What is Function?

Type of function?

Function return type?

Example of real world (Function)?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

34 | P a g e www.onlinevidyalay.com

class Main {

 // here n1 and n2 is parameter

 static int sub(int n1, int n2) {

 return (n1-n2);

 };

 // return type is int

 // function name sum -> perform addition of two number

 static int sum(int a, int b) {

 return (a + b);

 }

 public static void main(String[] args) {

 // 3, 4 arguments

 int addition = sum(3, 4);

 int subtration = sub(4, 2);

 System.out.println("Sum of two number is : " + addition);

 System.out.println("Sub of two number is : " + subtration);

 }

}

Method overloading

Same with different signature is called method overloading, mean one method

can be declared at multiple times with different arguments and definition.

class Main {

 static int sum(int n1, int n2) {

 return (n1 + n2);

 }

 static double sum(double n1, double n2) {

 return (n1 + n2);

 }

FAQ in interview by this topic

What is Method overloading?

Why do we need?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

35 | P a g e www.onlinevidyalay.com

 static float sum(float n1, float n2) {

 return n1 + n2;

 }

 public static void main(String[] args) {

 int addInt = sum(3, 4);

 double addDoub = sum(3.4, 5.6);

 float addFloat = sum(4.5f, 3.2f);

 System.out.println("Add1 : " + addInt);

 System.out.println("Add2 : " + addDoub);

 System.out.println("Add3 : " + addFloat);

 }

}

/*

Add1 : 7

Add2 : 9.0

Add3 : 7.7

*/

Array

Array is a variable, which stores multiple values of similar data types

of data on contiguous fashion (manner).

Decleration of array

data_type[] ArrayName = new data_type[size];

data_type ArrayName[size] = new data_type[size];

int[] marks = new int[3];

Initialization of Array

ArrayName[0] = value;

ArrayName[1] = value;

FAQ in interview by this topic

What is an Array?

How to declare and initiaize an array?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

36 | P a g e www.onlinevidyalay.com

ArrayName[2] = value;

ArrayName[3] = value;

.

.

.

ArrayName[N] = value;

// declaration

int[] arr = new int[3];

// initialization

arr[0] = 34;

arr[1] = 45;

arr[2] = 90;

2D-Array

2d arrays is like a matrix, 2d arrays have row and columns, indexing starts with zero. Horizontal line is called

row and vertical line called colunm

Declaration

Syntax:

data_type arr[][] = new data_type[row][column];

int arr[][] = new int[2][2];

String

String is a non-primitive data type used to store sequence of

characters. Strings are immutable (unchangable) in java.

FAQ in interview by this topic

What is String?

Difference between ‘A’ and “A”.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

37 | P a g e www.onlinevidyalay.com

String declaration

Syntax:

String varName = “values”;

// String declaration

String name = "Heera Singh Lodhi";

// display string

System.out.println(name);

// input a string

Scanner sc = new Scanner(System.in);

String name = sc.next(); // for single word

// take a sentence input

// sc.nextLine()

System.out.println("Your name is: "+name);

String firstName = "Heera";

String lastName = "Singh";

String fullName = firstName +" "+ lastName;

System.out.println(fullName); -> Heera Singh

String length – string.length() -> return the length of string

For example

/*

charAt()

Returns the char value in this sequence at the specified index. The first char

value is at index 0, the next at index 1, and so on, as in array indexing.

The index argument must be greater than or equal to 0, and less than the length

of this sequence.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

38 | P a g e www.onlinevidyalay.com

If the char value specified by the index is a surrogate, the surrogate value is

returned.

Parameters:

index the index of the desired char value.

Returns:

the char value at the specified index.

Throws:

IndexOutOfBoundsException - if index is negative or greater than or equal to

length(). */

*/

System.out.println(fullName.length()); // -> 11

// accessing string character by character

for (int i=0; i<fullName.length(); i++) {

 System.out.println(fullName.charAt(i));

}

// OUTPUT

H

e

e

r

a

S

i

n

g

h

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

39 | P a g e www.onlinevidyalay.com

String comparison / String equality

Syntax:

str1.compareTo(str2)

String s1 = "Heera";

String s2 = "Heera";

// condition of compareTo funtion

// if s1 > s2 -> any +ve value

// if s1 < s2 -> any -ve value

// if s1 == s2 -> zero/0

if (s1.compareTo(s2) == 0) {

 System.out.println("String are equal");

} else {

 System.out.println("String are not equal");

}

// OUTPUT

// Strings are equal

// --

class Main {

 public static void main(String[] args) {

 String s1 = new String("AB");

 String s2 = new String("AB");

 String s3 = s1;

 /*

 * to test weather two string are equal, use the equals() method.

 * The expression str1.equals(str2)

 * return true if strings str1 and str2 are equal, false otherwise.

 * Note that str1 and str2 can be string variables or string literals

 * "AB".equals(s1);

 * is perfectly legal.To test whether two strings are identical except for

the

 * upper/lowercase letter distinction, use the equalsIgnoreCase method.

 * "AB".equalsIgnorCase(s1);

 *

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

40 | P a g e www.onlinevidyalay.com

 * Do not use the == operator to test whether two strings are equal! It

only

 * determines whether or not the strings are stored in the same location.

Sure, if

 * strings are in the same location, they must be equal. But it is en-

tirely possible

 * to store multiple copies of identical strings in different places.

 *

 * */

 if (s1 == s2) {

 System.out.println("Same");

 } else {

 System.out.println("Not same");

 }

 if (s1.equals(s2)) {

 System.out.println("Same");

 } else {

 System.out.println("Not same");

 }

 if (s1 == s3) {

 System.out.println("Same");

 } else {

 System.out.println("Not same");

 }

 if (s1.equals("AB")) {

 System.out.println("Same");

 } else {

 System.out.println("Not same");

 }

 if ("AB" == s1) {

 System.out.println("Same");

 } else {

 System.out.println("Not same");

 }

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

41 | P a g e www.onlinevidyalay.com

 }

}

// OUTPUT

// Not same

// same

// same

// same

// Not same

C programmers never use == to compare strings but use strcmp instead. The
Java

class Main {

 public static void main(String args[]) {

 String s1 = "Heera";

 if (s1.compareTo("Heera") == 0) {

 System.out.println("Strings are equal");

 } else {

 System.out.println("Strings are not equal");

 }

 }

}

// OUTPUT

// Strings are equal

but it seems clearer to use equals instead

NOTE - what is difference between == and equals()
== is relational operator, it check reference of an object and equals is member method of String class, it

check the content of an object.

FAQ in interview by this topic

What is difference between == and .equals comparison in string?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

42 | P a g e www.onlinevidyalay.com

Empty and null strings

The empty string “” is a string of length 0. You can test whether a string is empty by calling

 if (str.length() == 0)

or

 if (str.equals(“”))

An empty string is a Java object which holds the string length (namely, 0) and
an empty contents. However, a String variable can also hold a special value,
called null, that indicates that no object is currently associated with the
variableTo test whether a
string is null, use

if (str == null)

Sometimes, you need to test that a string is neither null nor empty. Then use

if (str != null && str.length() != 0)

You need to test that str is not null first. it is an error to invoke a method on a null value.

Substring or string slicing (in python)

import java.util.*;

class Main {

 public static void main(String[] args) {

 String s1 = "Heera";

 String s2 = "Heera";

 // functioning of string.substring(bignning index, ending index)

 // ending index is exclude

 System.out.println(s1.substring(2, 5)); // same as s1[2:5] in python

 // OUTPUT -> era

 System.out.println(s1.substring(3));

 // OUTPUT -> ra

 }

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

43 | P a g e www.onlinevidyalay.com

}

parseInt method of Integer class

import java.util.*;

class Main {

 public static void main(String[] args) {

 String str = "123";

 int number = Integer.parseInt(str);

 System.out.println(number);

 }

}

toString method of Integer class

import java.util.*;

class Main {

 public static void main(String[] args) {

 int number = 123;

 String str = Integer.toString(number);

 System.out.println(str);

 }

}

Task

➔ Given an email like this -> Heera222@gmail.com your task is to remove @gmail.com domain.

➔ Given a string for example ‘Heera’, your task is to replace ‘e’ with ‘I’.

import java.util.*;

class Main {

 public static void main(String[] args) {

http://www.onlinevidyalay.com/
mailto:Heera222@gmail.com

Heera Singh Lodhi

Java Programming

44 | P a g e www.onlinevidyalay.com

 String email = "Heera222@gmail.com";

 System.out.println(email.substring(0, email.indexOf('@')));

 String name = "Heera";

 System.out.println(name.replace('e', 'i'));

 }

}

// OUTPUT

// Heera222

// Hiira

Q5 – Subsequence of a string.

class Main {

 static void sequenceDis(String str, String newStr, int start, int count) {

 if (start == count) {

 System.out.println(newStr);

 return;

 }

 char currChar = str.charAt(start);

 sequenceDis(str, newStr+currChar, start+1, count);

 sequenceDis(str, newStr, start+1, count);

 }

 public static void main(String[] args) {

 sequenceDis("abc", "", 0, 3);

 return;

 }

}

Strings builder

StringBuilder is a class that is used to manipulate and create strings. It is similar to the String class, but with
one key difference: String objects are immutable, meaning that once you create a String object, you cannot
change its value. StringBuilder objects, on the other hand, are mutable, meaning that you can modify their
contents after they are created.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

45 | P a g e www.onlinevidyalay.com

StringBuilder provides a set of methods for adding, inserting, and deleting characters in a string. These methods include

append(), insert(), delete(), and replace(), among others.

import java.util.*;

class Main {

 public static void main(String[] args) {

 // it's time consuming

 String firstName = "Heera";

 String lastName = "Singh";

 String fullName = firstName + lastName;

 System.out.println(fullName);

 // it's better idea

 StringBuilder fname = new StringBuilder("Heera");

 StringBuilder lname = new StringBuilder("Singh");

 StringBuilder fuName = fname.append(lname);

 System.out.println(fname);

 System.out.println(fuName.charAt(0));

 System.out.println(fuName.length());

 }

}

// OUTPUT

// HeeraSingh

// HeeraSingh

// H

// 10

String reverse

import java.util.*;

class main {

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

46 | P a g e www.onlinevidyalay.com

 public static void main(String[] args) {

 StringBuilder sb = new StringBuilder("hello");

 for(int i=0; i<sb.length()/2; i++) {

 int front = i;

 int back = sb.length() - 1 - i;

 char frontChar = sb.charAt(front);

 char backChar = sb.charAt(back);

 sb.setCharAt(front, backChar);

 sb.setCharAt(back, frontChar);

 }

 System.out.println(sb); // -> olleh

 StringBuilder str = new StringBuilder("Heera");

 // System.out.println(str.reverse());

 // same as

 str.reverse();

 System.out.println(str);// -> areeH

 }

}

String v/s String builder/Buffer

String StringBuffer/StringBuilder

String is less efficient than StringBuffer. StringBuffer/StringBuilder is efficient than string.

String is Immutable sequence of characters. StringBuffer/StringBuilder is mutable sequence

characters.

In string take more time on operations than String

Builder.

StringBuffer/StringBuilder take less time than String.

String class overridden equals () method. StringBuffer/StringBuilder class use Object class

equals () method.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

47 | P a g e www.onlinevidyalay.com

Thread is safe. Thread is not safe.

Nature of string object is read only. Readable and writable.

String builder v/s StringBuffer

StringBuilder StringBuffer

String is efficient than StringBuffer. StringBuffer is less efficient than StringBuilder.

Object Oriented Programming

Introduction

Class

Class is a logical entity contain the information of their members like member method, static method,

member variable, static variable, access modifier, constructor, constant.

Every file creates separate .class file. If single file has multiple class, so multiple .class file created separately.

• Every class directly or indirectly inherited from Object class.

Syntax:

class ClassName {

 // data member

}

Implementation of Student class

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

48 | P a g e www.onlinevidyalay.com

/*

 * Author: Heera Singh Lodhi

 * Date: 19/07/2022

 * Program: Demonstration of student class

 *

 */

class Student {

 public int rollNum;

 public String name;

 public String course;

 public int m1,m2,m3;

 public int total() {

 return m1+m2+m3;

 }

 public double average() {

 return (m1+m2+m3)/3;

 }

 public void showInfo() {

 System.out.println("Student name is: "+name);

 System.out.println("Student roll number is: "+rollNum);

 System.out.println("Student course: "+course);

 System.out.println("Student total marks: "+total());

 System.out.println("Student average marks: "+average());

 }

}

class Main {

 public static void main(String args[]) {

 Student s1 = new Student();

 s1.rollNum = 01;

 s1.name = "Heera Singh Lodhi";

 s1.course = "Btech";

 s1.m1 = 88;

 s1.m2 = 85;

 s1.m3 = 90;

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

49 | P a g e www.onlinevidyalay.com

 s1.showInfo();

 }

}

// OUTPUT

// Student name is: Heera Singh Lodhi

// Student roll number is: 1

// Student course: Btech

// Student total marks: 263

// Student average marks: 87.0

import java.util.*;

class Pen {

 String color;

 String type;

 public void write() {

 System.out.println("Write someting");

 }

 public void printColor() {

 System.out.println(this.color);

 }

}

class Student {

 String name;

 int age;

 public void printInfo() {

 System.out.println(this.name);

 System.out.println(this.age);

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

50 | P a g e www.onlinevidyalay.com

 }

}

class Main {

 public static void main(String[] args) {

 Pen p1 = new Pen();

 p1.color = "blue";

 p1.type = "gel";

 p1.write();

 Student s1 = new Student();

 s1.name = "Heera Singh Lodhi";

 s1.age = 20;

 s1.printInfo();

 }

}

Abstract Class

Abstract mean – Partial (adhoora), not completed.

Abstraction can be achieved with either abstract classes or interfaces.

The abstract keyword is a non-access modifier, used for classes and methods:

• Abstract class

• Abstract method

Abstract class: is a restricted class that cannot to be create objects (to access it, it must be inherited from

another class, inherited class must be abstract class).

Abstract method: can only be used in an abstract class, and it does not have a body. The body is provided by

the subclass (inherited from).

If we declare method of class as abstract, it is mandatory to declare class as abstract.

• Can’t declare object of abstract class.

• Abstract class contain regular methods and normal methods.

• Abstract class contain normal methods with definition.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

51 | P a g e www.onlinevidyalay.com

• Normal class/concreate can’t override abstract class methods. It must be declared as abstract.

• In abstract class normal methods can be declare as static, it is possible.

• In abstract class can’t declare methods as static abstract.

An abstract class can have both abstract and regular methods:

// abstract class

abstract class AbstractClass {

 // abstract method

 abstract public void s();

 // regular method

 public void t() {

 System.out.println("HI");

 }

}

class InheritedClass extends AbstractClass {

 public void s() {

 System.out.println("Hello");

 }

}

class Main {

 public static void main(String[] args) {

 InheritedClass obj = new InheritedClass();

 obj.t();

 obj.s();

 }

}

// yadi inherited class me kewal ek abstact method (abstract base class) ko de-

fine hai to ko abstract nahi banana padega, yadi ek se adhik method (abstract

base class) ko define karna hai to inherited class ko bhi abstract class banana

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

52 | P a g e www.onlinevidyalay.com

hoga or in method ko use karne inherited class se ki ek or class inherited karna

hoga or eska object bana ke in sabhi methods ko use kar payenge.

// abstract class

abstract class AbstractClass {

 // abstract method

 abstract public void s();

 abstract public void h();

 // regular method

 public void t() {

 System.out.println("HI");

 }

}

// this class inherited from Super class (Abstract class)

abstract class InherAbstractClass extends AbstractClass {

 public void s() {

 System.out.println("Hello");

 }

 public void h() {

 System.out.println("Heera");

 }

}

class InheritedClass extends InherAbstractClass { }

class Main {

 public static void main(String[] args) {

 InheritedClass c1 = new InheritedClass();

 c1.s();

 c1.t();

 c1.h();

 }

}

Why And When To Use Abstract Classes and Methods?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

53 | P a g e www.onlinevidyalay.com

To achieve security - hide certain details and only show the important details of an object.

abstract class Super {

 public Super() {

 System.out.println("Super constructor");

 }

 public void meth1() {

 System.out.println("Meth1 of super");

 }

 abstract public void meth2();

}

class Sub extends Super {

 public void meth2() {

 System.out.println("Sub meth2");

 }

}

class Main {

 public static void main(String[] args) {

 Super su = new Sub();

 su.meth1();

 su.meth2();

 }

}

/*

Super constructor

Meth1 of super

Sub meth2

 */

Rules of abstract class (do’s and don’t of abstract class)

• Reference of super class but can’t create an object of super class.

• If one method has abstract of a class. If must be declare as abstract class.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

54 | P a g e www.onlinevidyalay.com

• Abstract can’t make as final.

• Abstract method can’t as final.

• Abstract class don’t declare as static same as abstract method.

Constructor

Constructor is a special type of method which never return a value, construct is used to initialize member of a

class.

• Default constructor

• Parameterized constructor

• Copy constructor – copy object to another object.

import java.util.*;

class Student {

 String name;

 int age;

 // default constructor

 Student() {

 System.out.println("Default constructor called");

 }

 // parameterized constructor

 Student(String name, int age) {

 this.name = name;

 this.age = age;

 }

}

class Main {

 public static void main(String args[]) {

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

55 | P a g e www.onlinevidyalay.com

 Student s1 = new Student("Heera Singh", 20);

 }

}

Exmple of copy constructor

import java.util.*;

class Student {

 String name;

 int age;

 Student() {

 }

 public void printInfo() {

 System.out.println("Student name is : "+ this.name);

 System.out.println("Student age is : " + this.age);

 }

 // Copy constructor

 Student(Student s2) {

 this.name = s2.name;

 this.age = s2.age;

 }

}

class Main {

 public static void main(String args[]) {

 Student s1 = new Student();

 s1.name = "Heera Singh";

 s1.age = 20;

 Student s2 = new Student(s1);

 s2.printInfo();

 }

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

56 | P a g e www.onlinevidyalay.com

}

class Student {

 String name;

 int age;

 public void printInfo(String name) {

 System.out.println(name);

 }

 public void printInfo(int age) {

 System.out.println(age);

 }

 public void printInfo(String name, int age) {

 System.out.println(name + " " + age);

 }

}

class Main {

 public static void main(String args[]) {

 Student s1 = new Student();

 s1.name = "Heera Singh";

 s1.age = 20;

 s1.printInfo(s1.age);

 s1.printInfo(s1.name);

 s1.printInfo(s1.name, s1.age);

 }

}

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

57 | P a g e www.onlinevidyalay.com

Constructor Chaining

Constructor chaining is the process of calling one constructor from another constructor with respect

to current object.

One of the main uses of constructor chaining is to avoid duplicate codes while having multiple

constructor (by means of constructor overloading) and make code more readable.

• Within same class: It can be done using this () keyword for constructors in the same class.

• From base class: by using super() keyword to call the constructor from the base class.

class Super {

 Super() {

 System.out.println("HI X");

 }

 Super(int x) {

 System.out.println("HI parameter of X");

 }

}

class Sub extends Super {

 Sub() {

 System.out.println("HI Y");

 }

 Sub(int y) {

 this(); // this is a keyword reference to the current object

 System.out.println("HI parameter of Y");

 }

}

class Main {

 public static void main(String[] args) {

 Sub y1 = new Sub(1);

 }

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

58 | P a g e www.onlinevidyalay.com

}

// HI X

// HI Y

// HI parameter of Y

class Sub extends Super {

 Sub() {

 System.out.println("HI Y");

 }

 Sub(int y) {

 super(y); // super is keyword reference to super class

 System.out.println("HI parameter of Y");

 }

}

class Main {

 public static void main(String[] args) {

 Sub y1 = new Sub(1);

 }

}

// HI parameter of X

// HI parameter of Y

Polymorphism

One name different action. Poly -> many, Morphism -> forms => many forms.

In java polymorphism achieve through method overloading as well as method orderriding.

Method overloading

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

59 | P a g e www.onlinevidyalay.com

A class have two methods same with different signature is called method overloading, compiler has to be

decided at compile time which method should we called, also know as compile time polymorphism. Method

overloading achieve in single class but method overriding achieve in must have two classes super class and sub

class.

/*

 * Author: Heera Singh Lodhi

 * Date: 19/07/2022

 * Program: Method overloading

 *

 */

class Test {

 public int max(int a, int b) {

 return a>b?a:b;

 }

 public int max(int a, int b, int c) {

 if(a>b && a > c)

 return a;

 else if(b > c)

 return b;

 return c;

 }

}

class Main {

 public static void main(String[] args) {

 Test t1 = new Test();

 System.out.println(t1.max(2, 5));

 System.out.println(t1.max(4,5,6));

 }

}

Method overriding

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

60 | P a g e www.onlinevidyalay.com

Redefining a method of super class inside class is called method overriding. Also called as run-time

polymorphism.

/*

 * Author: Heera Singh Lodhi

 * Date: 19/07/2022

 * Program: Method Overriding

 */

class Super {

 public void display() {

 System.out.println("Super display");

 }

}

class Sub extends Super {

 public void display() {

 System.out.println("Sub display");

 }

}

class Main {

 public static void main(String[] args) {

 Super su = new Super();

 su.display(); // -> super class display called

 Super su1 = new Sub();

 su1.display(); // -> sub class display called

 }

}

Here two class say Super and Sub, both have method name with same signature, compiler decided which

method should we call at run-time is called run-time polymorphism.

Method overloading v/s Method overriding.

S. No. Overloading Overriding

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

61 | P a g e www.onlinevidyalay.com

1. Method overloading is a compile-time

polymorphism.

Method overriding is a run-time

polymorphism.

2. We achieve method overloading in same class. We achieve overriding in two different classes

with inheritance relationships.

3. Method overloading may or may not require

inheritance.

Method overriding always need inheritance.

4. Method must have same name with different

signature.

Method must have same with same signature.

5. In method overloading, the return type can or

can not be the same, but we just have to change

the parameter.

In method overriding, the return type must be

the same or co-variant.

6. Private and final methods can be overloaded. Private and final methods can’t be overridden.

7. Argument list should be different while doing

method overloading.

Argument list should be same in method

overriding.

8.

Inheritance

Package

Packages contain encapsulation mechanism that grouped classes and interfaces into a single unit. Or Package

is a collection of classes, methods, and interfaces.

Types of packages

• In-built packages - java.lang.*, java.util.*

• User-defined packages

Difference between user defined package and built-in package?

We declare user defined packages in program’s top the lines.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

62 | P a g e www.onlinevidyalay.com

Why we use package in java?

Name conflict and Security of class, so we use package in java.

Interface

Interface called as abstract class with all abstract methods. Interfaces are useful for achieving run-time

polymorphism.

Interface contain all methods definition partially, but abstract class may or may not.

Abstract class has extended and interfaces are implements.

• Interfaces can be extending.

• By default interface contain all methods abstract and public.

• Interface can’t declare methods as static and final, but static block and final variable is also used.

• We can’t declare interface methods are protected and private.

• We can’t create an object of interface.

interface Test {

 public void meth1();

 public void meth2();

}

class My implements Test {

 public void meth1() {

 System.out.println("Meth1 of class My");

Why we design interface?

• We design interface when all requirements are partially defined.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

63 | P a g e www.onlinevidyalay.com

 }

 public void meth2() {

 System.out.println("Meth2 of class My");

 }

}

class Main {

 public static void main(String[] args) {

 Test t = new My();

 t.meth1();

 t.meth2();

 }

}

Example

class Phone {

 public void call() {

 System.out.println("Phone call");

 }

 public void sms() {

 System.out.println("Phone sending sms");

 }

}

interface Camera {

 public void click();

 public void record();

}

interface MusicPlayer {

 public void play();

 public void pause();

 public void resume();

 public void stop();

}

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

64 | P a g e www.onlinevidyalay.com

abstract class SmartPhone extends Phone implements Camera, MusicPlayer {

 public void videoCall() {

 System.out.println("Smart phone video calling");

 }

 public void click() {

 System.out.println("Smart phone clicking photo");

 }

 public void record() {

 System.out.println("Smart phone recording video");

 }

 public void play() {

 System.out.println("Smart phone playing music");

 }

 public void pause() {

 System.out.println("Smart phone pause music");

 }

 public void resume() {

 System.out.println("Smart phone resume music");

 }

 public void stop() {

 System.out.println("Smart phone resume music");

 }

}

class Xiaomi extends SmartPhone {

 public void info() {

 System.out.println("Xiaomi Smart phone");

 }

}

class Main {

 public static void main(String[] args) {

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

65 | P a g e www.onlinevidyalay.com

 Xiaomi s = new Xiaomi();

 s.call();

 s.play();

 s.pause();

 s.stop();

 s.info();

 }

}

/*

 *

 * Phone call

Smart phone playing music

Smart phone pause music

Smart phone resume music

Xiaomi Smart phone

 */

#Challange

interface Member {

 void callBack();

}

class Customer implements Member {

 String name;

 @Override

 public void callBack() {

 System.out.println("Ok, I will visit "+name);

 }

 Customer(String n) {

 name = n;

 }

}

class Store {

 Member mem[] = new Member[20];

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

66 | P a g e www.onlinevidyalay.com

 int count=0;

 void register(Member m) {

 mem[count++] = m;

 }

 void inviteSale() {

 for(int i=0; i<count; i++) {

 mem[i].callBack();

 }

 }

}

class Main {

 public static void main(String args[]) {

 Store s = new Store();

 Customer c1 = new Customer("John");

 Customer c2 = new Customer("Heera");

 s.register(c1);

 s.register(c2);

 s.inviteSale();

 }

}

Interface v/s Abstract class

If we declare class as abstract is not compulsory to declare all methods as abstract (abstract class contain both

regular method and normal method). But interface is a collection of abstract methods.

SNo. Interface Abstract class

1. All methods are defined partially. In abs class methods are partially may defined

or may not.

2. Interface implement using ‘implements’ keyword. Abs class extend using ‘extends’ keyword.

3. Interface has only static and final variables. Abs class can have final, non-final, static, and

non-static variables.

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

67 | P a g e www.onlinevidyalay.com

4. Members of a Java interface are public by default. A java abstract class can have class members

like private, protected, etc.

5. In interface can’t declare constructors and

destructors.

An abs class can declare constructors and

destructors.

Interface v/s multiple inheritance

Inner class

Types of inner class

• Nested inner class

• Local inner class

• Anonymous inner class

• Static inner class

Nested inner class

Inner class can access member of outer class directly without creating an object of outer class, but outer can

access member of inner class creating an object of inner class. So, we can use inner class member.

Every file creates separate .class file. If single file has multiple classes, so multiple .class file created separetly.

Outer class -> Outer.class

Inner class -> Outer$Inner.class

Implementation

class Outer {

 int x = 10;

 class Inner {

 int y = 20;

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

68 | P a g e www.onlinevidyalay.com

 void innerDisplay() {

 System.out.println(x);

 System.out.println(y);

 }

 }

 void outerDisplay() {

 Inner i = new Inner();

 i.innerDisplay();

 System.out.println(i.y);

 }

}

class Test {

 public static void main(String[] args) {

 Outer o = new Outer();

 o.outerDisplay();

 // creating object of inner class

 Outer.Inner i = new Outer().new Inner();

 i.innerDisplay();

 }

}

Local inner class

When you want to write a class that is inheriting some existing class or you want to writing a class

implementing an interface.

// local inner class implementation

class Outer {

 void display() {

 class Inner {

 void innerDisplay() {

 System.out.println("Hello");

 }

 }

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

69 | P a g e www.onlinevidyalay.com

 Inner i = new Inner();

 i.innerDisplay();

 // same as

 // new Inner().innerDisplay();

 }

}

class Main {

 public static void main(String[] args) {

 Outer o = new Outer();

 o.display();

 }

}

Anonymous class

An anonymous class can define at time of creation of object itself. You define the class as well as create an

object. Usually these are usefull for abstract class and interfaces.

abstract class My {

 abstract void display();

}

// same as

// interface My {

// void display();

// }

class Outer {

 public void meth() {

 My m = new My() {

 // overridden method

 public void display() {

 System.out.println("Hello");

 }

 };

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

70 | P a g e www.onlinevidyalay.com

 m.display();

 }

}

Why we need of anonymous class?

If you have to implementing an interface and its uses limited you don’t have to write separate class and their

same place you can implement the interface as an anonymous class.

Static inner class

Static inner classes are the member of outer classes, the object of outer classes can be created outside the

outer class (using outer class name), The object of static inner class can be created anywhere.

• Static inner class can access the member of outer class directly, only static member of that class not all

member.

class Outer {

 static int x = 20;

 int y = 20;

 static class Inner {

 void display() {

 System.out.println(x);

 // this will show error

 // System.out.println(y);

 }

 }

}

class Main {

 public static void main(String[] args) {

 Outer.Inner i = new Outer.Inner();

 i.display();

 }

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

71 | P a g e www.onlinevidyalay.com

}

Static

Final

Final is a keyword like const in c/c++. In java final used in many ways.

• Final variable

• Final method

• Final class

Final variable

Once value assign than after can’t change their value. All constant variable name in UPPERCASE this is a

convention not a rule.

final int MAX = 1;

Final Method

Final method can’t be overridded.

class Final {

 final void meth1(){

 System.out.println("HI");

 }

}

class SubFinal extends Final {

 // this will throw an error

 void meth1() {

 System.out.println("Hello");

 }

}

Final Class

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

72 | P a g e www.onlinevidyalay.com

Final class does not extendded or inherited.

final class Super {

 .

 .

 .

}

// CTE

class Sub extends Super {

 .

 .

 .

}

Singleton class

A class which creates just a single object more than one object of class are not allowed.

class CoffeeMachine {

 private float coffeeQty;

 private float milkQty;

 private float waterQty;

 private float sugarQty;

 static private CoffeeMachine my = null;

 private CoffeeMachine() {

 coffeeQty=1;

 milkQty=1;

 waterQty=1;

 sugarQty=1;

 }

 public void fillWater(float qty) {

 waterQty=qty;

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

73 | P a g e www.onlinevidyalay.com

 }

 public void fillSugar(float qty) {

 sugarQty = qty;

 }

 public float getCoffee() {

 return 0.15f;

 }

 static CoffeeMachine getInstance() {

 if(my == null) {

 my = new CoffeeMachine();

 }

 return my;

 }

}

class Main {

 public static void main(String[] args) {

 CoffeeMachine c1 = CoffeeMachine.getInstance();

 CoffeeMachine c2 = CoffeeMachine.getInstance();

 CoffeeMachine c3 = CoffeeMachine.getInstance();

 System.out.println(c1+" "+c2+" "+c3);

 if(c1 == c2 && c1 == c3) {

 System.out.println("Same");

 }

 }

}

#Challange

import java.util.Date;

class Student {

 private String rollNo;

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

74 | P a g e www.onlinevidyalay.com

 private static int count = 1;

 private String assignRollNo() {

 Date d = new Date();

 String rno = "Univ-"+(d.getYear()+1900) + "-"+count;

 count++;

 return rno;

 }

 Student() {

 rollNo = assignRollNo();

 }

 public String getRollNo() {

 return rollNo;

 }

}

class Main {

 public static void main(String[] args) {

 Student s1 = new Student();

 Student s2 = new Student();

 Student s3 = new Student();

 System.out.println(s1.getRollNo());

 System.out.println(s2.getRollNo());

 System.out.println(s3.getRollNo());

 }

}

Exception handling

Exceptions are run-time errors. Errors are three types:

a. Syntax errors

b. Logical errors

c. Run-time errors

Syntax errors –

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

75 | P a g e www.onlinevidyalay.com

While writing a program if programmer doing grammatical mistakes that is syntactical mistake some mistake,

spelling mistake, that errors causes is called syntax error.

 Int x, y;

 x = 10

 z = x+y;

Logical errors –

Program runs but doesn’t give expected result.

To remove these types of error using tracing/debugger.

r = -b / 2a => r = -b/(2*a)

Above two types of errors face by programmer. And run-time errors face by users

Run-time errors –

Cause error – invalid/bad input, unavailability of resources. Run-time errors handle through exception

handling.

Syntax:

try {

 .

 .

 .

} catch (...){

 .

 .

 .

} catch(...) {

 .

 .

 .

} finally {

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

76 | P a g e www.onlinevidyalay.com

 .

 .

 .

}

Example

class Main {

 public static void main(String[] args) {

 int a, b, c;

 try {

 a = 10;

 b = 0;

 c = a/b;

 System.out.println("Result is : "+c);

 } catch (ArithmeticException e){

 System.out.println("Division error "+e);

 }

 }

}

Nested try and catch

Exception class

Every user define exception it must be extends from Exception class. We will be able to override Exception

class methods like toString(), getMessage(), void printStackTrace().

class OwnException extends Exception {

 public String toString() {

 return "Exception";

 }

}

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

77 | P a g e www.onlinevidyalay.com

Collection framework

Collection framework is a collection of class and interfaces. Collection framework provided by java developers.

Example of collection frameworks are ArrrayList, Stack, Queue, etc.

Interable

^

|

Collection

^

|

List-Queue-Set

Common methods on Collections

• Add

• Size

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

78 | P a g e www.onlinevidyalay.com

• Remove

• Iterate

• AddAll

• Removeall

• Clear

List interface

• ArrayList

• Linked list

• Vector -> Stack

Queue Interface

• Priority queue

• Linked list

• Deque (double ended queue) -> Array Deque

Set interface.

Set is a group of objects. all objects are unique.

• HashSet (un-ordered collection of objects)

• LinkedHashSet (ordered collection of objects)

• SortedSet -> TreeSet (sorted collection of objects)

Map interface

• HashMap (un-ordered collection of key-value pair)

• LinkedHashMap (ordered collection of key-value pair)

• SortedMap -> TreeMap (sorted collection of key-value pair)

• HashTable (Same as hashmap, but hashtable does not allow null value)

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

79 | P a g e www.onlinevidyalay.com

ArrayList

Array list is variable size list (dynamic array) stores number of objects.

Variable size means it can be expended and shrink in addition or removing to element in Arraylist.

• Variable size

• Non-contiguous

• Stores objects it is not stores primitive data types like int, float, char.

Methods in ArrayList class

 add

 get

 set (modify)

 remove/delete

 iterate

import java.util.ArrayList;

import java.util.ArrayList;

import java.util.Collections;

class Main {

 public static void main(String[] args) {

 ArrayList <Integer> list1 = new ArrayList<>();

 // add element

 list1.add(1);

 list1.add(2);

 list1.add(3);

 list1.add(4);

 System.out.println(list1); // -> [1,2,3,4]

 // get element

 int element = list1.get(0);

 System.out.println(element); // -> 1

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

80 | P a g e www.onlinevidyalay.com

 // insert element at specified position

 list1.add(1, 5);

 System.out.println(list1); // [1, 5, 2, 3, 4]

 // set element/replace element with new one

 list1.set(0, 6);

 System.out.println(list1); // -> [6, 5, 4, 3, 4]

 // remove element

 list1.remove(0);

 System.out.println(list1); // -> [5, 2, 3, 4]

 // size of ArrayList

 int size = list1.size();

 System.out.println(size); // -> 4

 // iterate array list

 for(int i=0; i<size; i++) {

 System.out.print(list1.get(i)+" "); // -> 5 2 3 4

 }

 // new line

 System.out.println();

 // sort ArrayList

 Collections.sort(list1);

 for(int i=0; i<size; i++) {

 System.out.print(list1.get(i)+" "); // -> 5 2 3 4

 }

 }

}

Collection framework

import java.util.Stack;

public class Main {

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

81 | P a g e www.onlinevidyalay.com

 public static void main(String[] args) {

 Stack <Integer> s1 = new Stack<>();

 s1.push(4);

 s1.push(3);

 s1.push(2);

 s1.push(1);

 while (! s1.isEmpty()) {

 System.out.println(s1.peek());

 s1.pop();

 }

 }

}

HashSet

A HashSet is a collection of items where every item is unique, and it is found in the java.util package.

• Set is unordered collection of items.

HashSet is same as unordered set in c++.

// It makes no guarantees as to the iteration order of the set; in particular, it does not guarantee that the order

// will remain constant over time. This class permits the null element.

import java.util.HashSet;

 // SET OF INTEGER VALUES

 HashSet<Integer> set = new HashSet<>();

 set.add(4);

 set.add(3);

 set.add(2);

 // DISPLAY

 System.out.println(set);

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

82 | P a g e www.onlinevidyalay.com

HashSet has many useful built-in methods like-

add() – add new item beginning of the set.

contains() – check existance of item in set.

remove(item) – remove specified item in the set.

clear() – remove all items.

size() – return size of set.

// ITERATOR

 // iterate all item of set

 Iterator it = set.iterator();

 // hashNext(), next()

 // next() -> Returns the next element in the iteration.

 it.next(); // --> return first item of set

 it.next(); // --> return second item of set

 it.hasNext(); // --> return true/false value, if iterator pointing

 // a particular, hasNext() check next element is it or not.

 // iterate set

 while(it.hasNext()) {

 System.out.println(it.next());

 }

HashMap

Thread And Concurrency

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

83 | P a g e www.onlinevidyalay.com

Thread

A lightweight process is called a thread. Thread is a flow of execution to complete a job. Every program has its

own thread, is called main thread. Main thread is controlled by JVM itself.

Ways to implement thread

Implementing runnable interface

Extending thread class

Implementing Runnable Interface

Runnable interface contains a run method which is necessary to define in derived class.

/**

 * author: Heera Singh Lodhi

 * demonstrating thread example implementing runnable interface

 */

class MyClass implements Runnable {

 /*

 * public abstract method of runnable interface

 */

 public void run() {

 for(int i=0; i<100; i++) {

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

84 | P a g e www.onlinevidyalay.com

 System.out.println("thread class");

 }

 }

}

public class Main {

 /**

 * @param args

 * written program doesn't give same result in same and another computer

 * becasuse of thread, main thread and user created thread running simutaneusly.

 *

 * newly created thread have its onw flow control and main have also separate flow

 * control

 */

 public static void main(String[] args) {

 MyClass myClass = new MyClass();

 Thread newThread = new Thread(myClass);

 newThread.start();

 for(int i=0; i<100; i++) {

 System.out.println("main class");

 }

 }

}

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

85 | P a g e www.onlinevidyalay.com

Extending Thread Class

/**

 * author: Heera Singh Lodhi

 * date: 16/06/2023

 * desc: thread demonstration

 */

class MyClass extends Thread {

 public void run() {

 for(int i=1; i<=100; i++) {

 System.out.println("my class");

 }

 }

}

public class Main {

 public static void main(String[] args) {

 MyClass myClass = new MyClass();

 myClass.start();;

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

86 | P a g e www.onlinevidyalay.com

 for(int i=1; i<=100; i++) {

 System.out.println("main class");

 }

 }

}

Access modifier

Acccess modifiers are used for specifying the access level or visibility of members of a class.

Types of modifiers

There are four modifiers in java.

• Default

• Private

• Protected

• Public

class Demo {

 int x;

 void show() {...}

 class Inner {...}

}

• Outer class can’t be private or protected.

• We can use any built-in or user defined class in two ways –

1. Create an object, 2. Exntends

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

87 | P a g e www.onlinevidyalay.com

 Default Private Protected Public

Same class Yes Yes Yes Yes

Same package sub-

class

Yes No Yes Yes

Same package non-

sub-class

Yes No Yes Yes

Different package

sub-class

No No Yes Yes

Different package

non-sub-class

No No No Yes

File Handling

We use the Scanner class to read the contents of the text file we created.

File class provide many methods to manipulate files.

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

class Main {

 public static void main(String[] args) {

 try {

 File file = new File("input.txt");

 // create new file

 // file.createNewFile()

 // return absolute/full path of input.txt file

 // file.getAbsolutePath();

 Scanner sc = new Scanner(file);

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

88 | P a g e www.onlinevidyalay.com

 while (sc.hasNextLine()) {

 System.out.println(sc.nextLine());

 }

 } catch (FileNotFoundException e) {

 System.out.println("An error occured");

 }

 }

}

Networking

Working with URLs:

Java provides the java.net.URL class to work with Uniform Resource Locators (URLs). Here's a simple example

of how to use it:

Working with sockets:

Java provides the java.net.Socket and java.net.ServerSocket classes for working with sockets, allowing

communication between clients and servers. Below is a simple example of a basic client and server

/**
 * @heera9331
 * @desc - networking demonstration using socket server
 * @date - 10-12-2023
 */

package Java.networking;

import java.net.ServerSocket;
import java.net.Socket;
import java.io.BufferedReader;
import java.io.InputStreamReader;

public class Server {

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

89 | P a g e www.onlinevidyalay.com

 public static void main(String[] args) {
 try {
 // Create a server socket
 ServerSocket serverSocket = new ServerSocket(8080);

 System.out.println("Server is listening on port 8080...");

 // Wait for client connection
 Socket clientSocket = serverSocket.accept();

 // Read data from the client
 BufferedReader reader = new BufferedReader(new InputStreamReader(clien-
tSocket.getInputStream()));
 String clientMessage = reader.readLine();
 System.out.println("Received from client: " + clientMessage);

 // Close sockets
 reader.close();
 clientSocket.close();
 serverSocket.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

/**
 * @heera9331
 * @desc - networking demonstration using socket server, creating client
 * @date - 10-12-2023
 */

package Java.networking;

import java.net.Socket;
import java.io.PrintWriter;

public class Client {
 public static void main(String[] args) {
 try {
 // Create a client socket
 Socket clientSocket = new Socket("localhost", 8080);

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

90 | P a g e www.onlinevidyalay.com

 // Send data to the server
 PrintWriter writer = new PrintWriter(clientSocket.getOutputStream(), true);
 writer.println("Hello from the client!");

 // Close the socket
 writer.close();
 clientSocket.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Interview Questions and Answers

Q1. What is difference between final, finally and finalize?

Final is a keyword and access modifier in java, used to declare constant. Final class can’t be inherited.

Finally, is the exception block, to execute the important code, whether the exception occur or not?

Finalize is the method which is used to perform clean up processing just before object is garwage collected.

Q2. What is ClassLoader in java?

ClassLoader to load .class file, classloader also knows class loader subsystem, situated in JVM.

Q3. What is the difference between stack and heap?

Stack is generally used to store the order of method execution and local variables. In contrast, Heap memory is

used to store the objects. After storing, they use dynamic memory allocation and deallocation i.e differences

between Heap and Stack Memory in Java?

Q4. What is an Association?

Q5. What is Aggregation?

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

91 | P a g e www.onlinevidyalay.com

Q6. Define Copy Constructor in Java?

A Copy Constructor in Java is a constructor that initializes an object through another object of the same class.

Q7. What is an object cloning?

An ability to recreate an object entirely like an existing object is known as Object Cloning in Java. Java provides

a clone () method to clone a current object offering the same functionality as the original object.

Q8. What is marker interface?

An empty interface in Java is referred to as a Marker interface. Serializable and Cloneable are some famous

examples of Marker Interface.

Q9. Why is Java not completely object-oriented?

Because java has primitive data so is not considered as pure/fully/complete object-oriented.

Q10. Define Wrapper Classes in Java?

In Java, when you declare primitive datatypes, then Wrapper classes are responsible for converting them into

objects (Reference types).

Q11. Define Singleton Classes in Java?

In Java, when you make the constructor of a class private, that class can generate only one object. This type of

class is popularly known as a Singleton Class.

Q12. What are generics in Java?

Generics in Java provide a way to create classes, interfaces, and methods with type parameters.

• Generics were introduced in Java 5 to enhance the type system and enable the development of more

robust and flexible code.

public class Box<T> {
 private T value;

http://www.onlinevidyalay.com/

Heera Singh Lodhi

Java Programming

92 | P a g e www.onlinevidyalay.com

 public void setValue(T value) {
 this.value = value;
 }

 public T getValue() {
 return value;
 }
}

Database concept

Database is a program which deals with storing and organizing the data in a permanent storage like hard disk.

Database is a collection of inter-related data permanently stored in the disk.

Data is organized in the form of tables. Tables may have relationship with other tables.

Q1. What is difference between files and database?

Row is also called tuple, record.

Structure of tables is called schema.

Primary: -

Primary is a column which contains unique values, such that you search using a primary key.

Primary key is unique and not null.

Back to Top

http://www.onlinevidyalay.com/

